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Basic geometric elements

* Geometry study the relationship among objects in N-dimensional
space

* In computer graphic, we mainly focus on objects in 2D & 3D space.

* Hoping to get a minimum set of geometric shapes and we can
construct complex object base on it.

* Three basic geometric elements
e Scalar
* Vector

* Point
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Scalar

e Scalar can be defined as a member of collection
e Collection has two operation (addition and multiplication).

* They comply with some basic arithmetic axioms
(associativity law, commutatively law, inverse)

* real numbers, complex numbers, and rational functions.

 Scalar doesn’t have geometric properties
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Vector

* Definition: vector is a line having the two properties
* Direction
* Length: |Vv|
* Examples:
* Power
* Speed

* Directed line segment
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Vector operations

e Each vector has an inverse

— Same length but different directions

e Each vector can be multiplied by a scalar
e A zero vector

— Lengthis O, direction is uncertain

e Sum of two vectors is a vector

— Triangle law
ﬂ "
U
4 -V Qv
vV=u-+w
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Inner product ( Dot product )

coS ¢ . 5

a-b = |al||b|cos ¢

The projection of a onto b

N. B. the projection is 0 if a is perpendicular to b

Computer Graphics 2014, ZJU
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Orthonormal Vector

¥
X
Perpendicular x-y = ()
Unit length Xx = 1
¥y =1
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Orthonormal Vector

¥
X
Perpendicular x-y = ()
Unit length Xx = 1
¥y =1
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Coordinates and Vectors

c = ax + Oy

|
”
o
|

ax-X+08x-y
Gy sx+py-y

R
|
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o
|
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Dot product between two vectors

A=2TgXt+ Yoy
b = TpX + Ypy

a-b=z.zy + YaWs

a-a=z;+y; =|al’

al =22 +32=va a
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Dot product: some applications in CG

* Find angle between two vectors (e.g. cosine of angle
between light source and surface for shading)

* Finding projection of one vector on another (e.g.
coordinates of point in arbitrary coordinate system)

* Advantage: can be computed easily in Cartesian
components

*
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Cross Product

/} a xb

I C=AaxXb
Le = Yacb — 2alb
Ye = Raq&p — Laglp
Ze — Talyp — Zalp

¢ perpendicular to bothaand b
|c| is equal to the area of quadrilateral a b
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Cross Product

a xb XXy
Y X Z

Z XX

X X X

2 ny
Z X Z

//
X
y
= 0
0
0
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Normals

e Each plane has a vector n perpendicular to itself

e |faplaneis determined with a point and two
vectors

P(a, B) =R+ ou + Bv
e we can get n by the following equation

n=uxy

*
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Linear space

* The most important mathematical space is the (linear)

vector space.
* Two basic geometric elements:
e scalar, vector
* Operation
* Scalar multiplication: u#=qa v

 \Vector addition: W=u-+ty
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Linear combination

* Given n vectorsvl, v2, ..., vn and n scalar al, a2, ..., an,
then

v=0oyvit o, et oy,

is also a vector, called the linear combination of this
set of vectors.

* |rrelevant with coordiante




Vectors have no positions

 The following vectors are equal
— As they have same length and direction

* |tis not enough for geometry to only have vector
space

— We still need points.
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Point

* Position in space

* Use uppercase letters

e Operational between points and vectors
* Subtraction with two points, we can get a vector
e Addition with a point and a vector, we get a point

£ v=P-Q
P=v+(Q
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Affine space

e Space constructed by points and vectors

* Operational:
* Vector + Vector = Vector
* Scalar x Vector = Vector
* Point + Vector = Point

e Scalar + Scalar = Scalar
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Linear combination of points

* Fixed coordinate system, given two points, what is P1
+ P27
* P1lisorigin, P1+ P2 =P2
* P1 and P2 are symmetric on origin, P1 + P2 = origin
 The Positions of P1, P2 are relevant with coordiante

e Combination coefficients have limitations

* When a,+o,+...+ o,,=1 , linear combination of points is a
point
* %P +%P,=P,+%(P,-P,) =point + vector = point




Affine convex combination

 Consider:
P=oP+a,P,+...+ o P,
When o+ a,+...+ o, =1, the equation above has

meaning and the result is called the affine
convex combination for P, P,, ..., P,

* If a20,, we get the convex hull for P,, P,, .
P

Il,
n

*
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Convex Hull

* The minimum convex contains P, P,, ..., P

* Can use the “Shrink” method to get it

i&@:) Computer Graphics



Line

 All points comply with the following form

P(a)=P,+ad
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Parametric form

 |tis the parametric form definition for line

— More general and stable
— Can be used in curves and surfaces

« Two-dimensional form
— Explicit: y=mx + h
— Implicit: ax + by +¢c=0
— Parametric: x(a)=x,+(1-a)x,
Na)=y,+(1-a)y
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Rays and segments

- Ifa>0, P(a) is a ray start from P, with direction d

 |f use two points to define vector d, then:

P(a)=Pu+a(P1—Pﬂ)¥(i-a) P,+aP,

 When 0<a<1, we get a segment

AV
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Linear interpolation

 Given two points A and B, their affine combination
PO)=(1-H)A+tB
defines a line pass these two points.

* Linear interpolation is applied in art and animation
— Key Frame

AN
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Polygon deformation

* Given two lines with the same number of vertices, we can get a
smooth transition from the first to the second polyline
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Man to Woman
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Celebrity Face

U= =

) S <

John F. Kennedy




Curve and Surface

* Curve is single parameter
defined geometry with form ﬂ/
P(a), the function is non-linear.

* Surface is define with P(a, b), P(a)

the function is non-linear.

* linear function is plane &
polygon
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Plane

* A plane is determined by a point with two vectors or three
points

u+v Vv

R Q

U
P(a, B)=R+au+Pv  Pa, p)=R+a(Q-R)+B(5-Q)

*
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Triangle

%
f, v
PEQIIMLE /

P S(a) Q
20<0, BLIBTENE=HFEHK A
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Outline

* Geometry
* Representation
e Transformation

* Transformation in OpenGL
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Representation

* Until now we have only discussed the geometric objects,
without using any reference frame, for example, the coordinate

system

* Requires a reference point and the frame to contact with

objects in the physical world

e Position: Where is a point?(if there is not frame, we can not

answer it)

* World coordinate system
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Coordinate

« Basis for n dimensional vector space v,, v,, ..., V,
A vector v can be express in this form
V=0 vt oLy, et oy,
- Scalar set{a,, a,, ..., a,} is called the representation of
the given basis

a=|a,a,....a,] =|

Computer Graphics




Example

v =2v, +3v, - 4v,
a= [25 3: '4]T

* Note that the above statement is relative to a particular basis

* Eg: OpenGL represents a vector with respect to the world
coordinate system, it is necessary to transform to the camera

coordinate system.
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Coordinate

 Which is right?

(a) (b)
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Frame

* Coordinate system is insufficient to represent points.

* We need an origin to construct a frame. The origin and the
basis vectors determine a frame (¥728).

y
A P =(x)2)
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Representation in frame

* Frame is determined by (O, v,, v,, ..., V,)

* Within a given frame, every vector can be written
uniquely as:

T
W=V, TV, Tazyz=ayv,

just as in a vector space;
« every point can be written uniquely as

P=Py+ Bv,+ Byvy + B3v3 =Py + bTv.
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Point and Vector confusion

« Consider point and vector
v=ouvt ottt oy,
P =0+ Bt By, t...t By,

 They have similar representation, so it is easy
to confusion them

v - [al, az,o..,an]T,

P=1[By Byseees Bul’s
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Unified representation

 If 0-P = 0(zero vector), 1 - P =P, then

V=0uvt oL, et oLy,
P =0+ Byt By, ...t By,

=[V1, vz 9eeey Vn, 0] [Bl} l32!'"3 Bm I]T
* N+1 dimensional homogeneous coordinate
representation

v=[ay Oyyeens,, 017

P = [Bp Bzy"'s Bna ]-]T
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Homogeneous coordinate

* General form for 4-dimension homogeneous
coordinate:

P =[x, Vs 2 W]Ts

— When w is not 0, we can get 3-dimension point’s
coordinate by the following:

X<—xiw, y—yw, 7z 2z/w
— When wis 0, P is a vector

* Note: In homogenous coordinate, a straight line
through the origin is mapping to a point in three-
dimensional space

w

‘ A (x.y.w)

4 w.y/w.1)

b
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Homogeneous coordinate and CG

* Homogeneous coordinates is the key to all computer
graphics systems

 All standard transform (rotate, zoom) can be applied to 4 X
4 matrix multiplication

* Hardware pipeline system can be applied to the four-
dimensional representation

* For the orthogonal projection, you can ensure vector by w =
0, ensure pointbyw =1

* For perspective projection, the need for special treatment:
perspective division

AN
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Coordinate transformation

« Consider the same vector with two different basis:

a= [U«p o, as]T
b= [Py, By, Bsl”

« Among them

V=0Vt Oy, oY= [Vy,v,, V5] [0,a,,04]F
= Byuegt Pyry +Psus= [ug,uy,u5] [Py By, Bs]T

*
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Use 1st Basis to represent 2nd

U= Y11t Yi2v2t+ Y13v3

— A %
Uy= Y211t Y222t T23V3 2
Uz=Y31V1T V32V Y33V3 v

AV
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Matrix form

 All coefficients define a 3 X 3 matrix

Yu Y2 T3
M=%, Vn Vi
(V31 Va2 V33

 We can connect the two basis by
a=M"b

AV
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Changing the frame

* Perform similar operation to homogeneous coordinate

* Consider frame

(Pgs V15 V35 v3)
(Qqs uy, 1y, Uy)

* Any vector or point can be represented by one of them
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One Frame represent another

« Similar to the changes in basis, we have
U= Yuv1t Yizva T Y13V3
Uy= Y1V1T Ya2Vat Ya3V3
U3= Y31V1T Y32V2 Ya3V3
Qo= Y1+ Y22t Yasv3 + Py

* These equations can be written in the form

Hl 1-’1
Hz 1"'2
=M
113 1-"'3
- Q{] - - PO -
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One Frame represent another

e where now M is the 4 X 4 matrix

Yu Yo Y3 O
M = Y51 Yas VY O
Y31 Vm Vs O
Ya1 Va2 Va3 i

* M is called the matrix representation of the change of

frames.

AV
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One Frame represent another

* We can also use M to compute the changes in the
representations directly.

e Suppose that a and b are the homogeneous coordinate
representations either of two points or of two vectors in
the two frames. Then

b’ —b'M —al =

 Hence: a = M'h.

*
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One Frame represent another

* When we work with representations, as is usually the
case, we are interested in MT, which is of the form

Gy Wy O3 Oy

Xy Uy Uy Oy

U3 G3; 33 3y
0 0 0 1

and is determined by 12 coefficients(4 coefficients is
fixed).

*
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Transform representation

* Any point or vector has the same form In two frames
— 1stframe: a=[o,, 0, 0y 0,]7
— 2™ frame: b= [By B, B3y Bal”

When represents a point o=8,=1 ,When represents a
vector ,-p,-=0, anda=M"b ,The size of matrix M is 4x4,
which defines a affine transformation with
homogeneous coordinate.

*
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Advantages of affine transformation

* All of the affine transformation remain linearity

* The most important is that all affine transformations can be

represented as matrix multiplications in homogeneous
coordinates.

* The uniform representation of all affine transformations makes

carrying out successive transformations far easier than in three-
dimensional space.

 modern hardware implements homogeneous coordinate

operations directly, using parallelism to achieve high-speed
calculations.
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Movement of the camera

= O = O
e
I
=

{b)




Outline

* Geometry
* Representation
* Transformation

* Transformation in OpenGL
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General transformation

* The so-called transformation is to map points to other points,
the vectors are mapped to other vectors
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Linear Transformations

= Combinations of

= shear |::C':| |:a b:||:x:| x'=ax+by
s Scale — |
= rotate V' c dijvy y'=cx+dy

« reflect

= Properties (why?)
= satisfies T(sx+ty) = s T(x) + t T(y)
= Origin maps to origin
= Straight lines map to straight lines
« parallel lines remain parallel
= closed under composition
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Affine Transformations

= Combinations of

= linear transformations X' a b ¢
= translations Vi=|d e f
w| [0 0 1

= Properties (why?)
= origin does not necessarily map to origin
lines map to lines
= parallel lines remain parallel
ratios are preserved
closed under composition

Computer Graphics
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Affine transformation

* Maintaining collinearity
 Many important physical feature of transformation

* Rigid transformation: rotation, translation ( Only alter position
and Orientation )

 Other affine transformations ( Scaling, shear ) will alter object’s
shape.

* In CG world , we just need to change the line of the two
endpoints, and the system automatically after the conversion
to draw the line between the two endpoints.

Computer Graphics



Why we need transformation ?

* Procedures to compute new positions of objects

* Used to modify objects or to transform (map) from one
coordinate system to another coordinate system

y A 1
AY aft erQ

after before

>
before X
7 X

As all objects are eventually represented using
points, it is enough to know how to transform points.
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Function 1

* Construct scenes

m \ﬂqqﬂ

T~
_/\ /\ /\
f




Function 1

* Construct 3D scene




Function 1

* Snowflake structure

12 times

/o

=2
==
o

s
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Function 2

* The designer may want to view object from different angles of
the same scene, then he can:

* the object is fixed, the position of the camera is transformed

e




Function 3

* In computer animation, in the adjacent frames, the position of
several objects move relative to each other.

* This is done by translating and rotating the local coordinate system.




Pipeline

T CGkRE TRAERERF)

- T(u)
v T(v)

v ® T(v)® 'y
®u * 1w

T(u)

o :
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Translation

* Put a point to a new position

P!

P

* Determined by a vector d

* Three free degrees

*P’=P+d

*
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Translation of objects

* Translate all points of an object along the same vector.

Before
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Representation of Translation

* Homogeneous coordinates in a frame

p=Ix,y,2, 117
p’=[xy,2,1]T
d=I[d,d,d,0]"

°Thenp’=p+d<9r

’ — '
X X+ dx’ R ﬁ&%@ﬁ%lﬂ
y=yt+d, o
?=z+d,

AV
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Translation matrix

Using a 4 X 4 homogeneous coordinates matrix T to represents
the translation

*p'=Tp ] )
1 0 0 d,

T=T,d,d,)= 0 104,
CEPTE0 00 1 d,

000 1

This form is more easily achieved, because all the affine
transformation can be used in this kind of form

*
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2D rotation
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2D rotation

* Consider O degrees rotation about the origin

x’=rcos(¢g+ 0) cos(A+B) = cosAcosB-sinAsinB
Yy / y’ = rsin (¢ + 9) sin(A+B) = sinAcosB+cosAsinB
b @ — |
x’=x cos 8-y sind
. y’=xsin 8+ y coséd
(X, )

*
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Simple Rotate

To rotate the cat’s head about its nose
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Simple Rotate

To rotate the cat’s head about its nose

& &

1. Translate the Nose
to the Origin
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Simple Rotate

1. Translate the Nose
to the Origin

2. Rotate by the
desired amount
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Simple Rotate

1. Translate the Nose
to the Origin

N 4 3. Translate back

2. Rotate by the
desired amount
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3D rotation

 Several special conditions:
* Respectively rotatable around the x, y, z-axis
e Rotate along the general axis through the origin

* Rotate along a general axis except the origin
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3D rotation around Z-axis

Rotation (around Z axis)

Jl.}_f

(0% 20) (X, 2) x'] [cosO =sinO O0][x’
y'|=|sin6 cos6 0

1 0 0 1|11

Ix] [cos® -sin® 0 0] [x]

¥y sind  cos6 0 0 Y

Z i 0 0 1 0] [z

1 0 0 0 1] (1

AV
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3D rotation around Z-axis

Rotation (around Z axis)

jh.}p

(x5 %) (%, 3 2) 'x'] [cos® —sin® 0][x]
y'|=|sin0 cosO 0|y

1 0 0 1111

[x] [cos® =—sin® 0 0] [x]

¥y sind  cos6 0 0 Y

Lo o 10|z

1] 10 0 0 1 |1

AV
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3D rotation around X-axis

Rotation (around X axis)

}T
(03D [x"] [cos® —sin® 0][x]
y'|=|sin® cos6 O]y
1 0 0 1|11
»X x| [1 0 0 0] [x]
y| |0 cosb -sin® 0] |y
z| |0 sin® cos® 0| |z
1 lo o 0o 1] |1

AV
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3D rotation around X-axis

Rotation (around X axis)

}T
()2 51D 7x'7T [cos® -—sin® 0][x

y'|=]sin® cos® Of|y
1 0 0 1|1

» X [x] [1 0 0 0] [x]
y| |0 cosO =sin0 0 Y
z| [0 sin® cos® 0] |z
1 0 0 0 1] |1

Computer Graphics 2014, ZJU
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3D rotation around Y-axis

. Rotation (around Y axis)

Ly (x| [cosO —sinO O][x’
y|=[|sinO cosO 0]y
0 0 1

I
—
—

question : why?

Computer Graphics 2014, ZJU
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3D rotation around Y-axis

(cosO =sin0 0] x]

ty
y'|=]|sin0 cosO Of|y
1 0 0 1][1
x] [cosO 0 sin6 0] [x]
y 0 1 0 0f [y
Tk —sinb 0 cosO 0] |z
1 0 0 0 1_ _1_

*
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Rotate along the general axis through the origin

* Can be decomposed as the combination of rotation on x, vy, z
axis

R(6) =R,(6,)R,(8,)R(6,)

* Note that the rotation order can not be exchanged
Y

./

AV
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Rotate around a fixed point except origin

* Move the fixed point to origin

* Rotate
* Move the fixed point back to its initial place

M =T(py)R(O)T(-py)

y
A \

)y

<
2
X
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Rotation surrounding a general axis

- Given axis defined by two points( 2 &1 e ¥ Hh):
h=(nynn)  Po=(xy,0,,2,)

- P rotates to P’ with respect to the axis by g

- We derive the rotation matrix by composition




Three steps (=P 1&)

(1) Transform | such that it overlaps with z-axis

(2) Rotate surrounding z-axis by @

(3) Reverse transform



Step 1

(1) Transform | such that it overlaps with z-axis: can be decomposed
three step again

(1a) Translate such that | passes through the origin

(1b) Rotate surrounding x-axis such that | locate on the ZOX plane

(1c) Rotate around y-axis such that | locate on the ZOX plane




(1a) Translation to P.

-l

1 0 0 —x
T(_xla_yla_zl): 0 1.0 e
0 0 1 -z
000 1




1b) Rotate by surrounding X-axis

(1T 0 0 0)
O cosa —smna O
R.(a)= . .
O smma cosa O
0 0 0 1)
a AN 4 EIEYOZ T
P se S8 A . Kk
2y — 4
cosq = - -
\/(yz ) +(z,—z)
sina = Y2 N

JOn =) +(z, - 2,)




1c) Rotate by surrounding y-axis

(cosf 0 —sinf 0

R.(f)= 0 1 0 0
Y sinf 0 cosfB O
Lo 0 0 1

X A N 24 S8 e 5 31 20X
A e S 2R Ve A . R

[

\/(yz _y1)2 +(z, _Zl)z
J6u =3 + (0, =3 + (2, - 2,)°

Xy =X

\/(-xz _x1)2 +(, _y1)2 +(z, _21)2

cosf =

sinff =




Step 2:

Rotate by @ in terms of z-axis

(cos @
sin @
0

. 0

R,(0)=

—sind 0 0)
cos@ 0 O
0 1 O
0 0 1)




Step 3.

Use reverse transformation to derive final
transformation

R(0) = T(xlaylazl).Rxl(a).Ryl(ﬂ)

*R,(B)* R () T(—x|,~|,—2,)




Scaling

* Scale along each coordinate (origin is fixed point)
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Matrix Notations for Transformations

 Point P (x,y,z) is written as the column vector P,

* A transformation is represented by a 4x4 matrix M

* The transformation is performed by matrix
multiplication

Q,=M*P,

*
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Matrix Representations and Homogeneous Coordinates

* Each of the transformations defined above can be
represented by a 4x4 matrix

* Composition of transformations is represented by
product of matrices

* So composition of transformations is also
represented by 4x4 matrix

Computer Graphics




Inverses in 3D!

Transformation Matrix Inverse

Scaling /sy 00 0
0 1/s, 0 0
0 0 1/s, 0
L 0 0 0 1l
Rotation 1 0 0 O0][cos¢p sing 0 O0][cos®@ 0 -sinf 0]
0 cosyp sinp Of|-sing cosp 0 Off 0 1 0 0
0 —siny cosy O[] O 0 1 0ffsin@ 0 cosf 0
0 0 0 1L 0 0 0 1L 0o 0 0 1]
Translation DR
01 0 —dy
0 0 1 —dz
0 0 0 1|
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Composite transformation

« Often want to combine transforms ( E.g. first scale by 2, then
rotate by 45 degrees

* Advantage of matrix formulation: All still a matrix

* Because many vertices have the same transformation, the price to
construct matrix M = ABCD is small

* The difficulty is how to construct a transformation matrix to
meet the requirements in accordance with the requirements of
the application

Computer Graphics




Matrix Composition

* matrices are convenient, efficient way to represent series
of transformations
* hardware matrix multiply

* From the mathematical point of view, the following representation is
equivalent: matrix multiplication is associative
+ p'= (THR¥(S*P)))
* p'=(T*R*S)*p

* procedure
e correctly order your matrices!
* multiply matrices together
* result is one matrix, multiply vertices by this matrix
* all vertices easily transformed with one matrix multiply




Matrix Multiplication is Not Commutative (A~B]3Z3#)

Transformation sequence is not commutative

—r

Computer Graphics




Matrix Multiplication is Not Commutative

First rotate, then translate =>

—r
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Matrix Multiplication is Not Commutative

First rotate, then translate =>

—r

First translate, then rotate =>

Computer Graphics



Properties of Transformations

Rigid Body:| Linear | Affine | FProiective
Type
Preserves | Rotation & |General 3x3| Linear + 4""';‘;3:;’;"”““
translation matrix translation £(0,0,0,1)
Lengths Yes No No No
Angles Yes No No No
Parallelness Yes Yes Yes No
Straight lines Yes Yes Yes Yes
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Transforming Geometric Objects

* lines, polygons made up of vertices
* transform the vertices
* interpolate between

* does this work for everything? no!
* normals are trickier




Computing Normals N

 normal
* direction specifying orientation of polygon
* W =0 means direction with homogeneous coords
* W =1 for points of object vertices
e used for lighting
* must be normalized to unit length
e can compute if not supplied with object

N R
N =(P,-R)x(F-P)

P P,
Assume vertices ordered CCW when viewed from visible side of
polygon




Transforming Normals

X' m, m, mg T, [X

Y' _ My, My, My Ty y

Zl m31 m32 m33 Tz Z
0] |0 0 0 1|0

* so if points transformed by matrix M, can we just

transform normal vector by M too?
e translations OK: w = 0 means unaffected

* rotations OK
e uniform scaling OK

* these all maintain direction




Transforming Normals

* nonuniform scaling does not work
* x-y =0 plane
* linex=y

* normal: [1,-1,0]
* direction of line x = -y

* (ignore normalization for now)




Transforming Normals

* apply nonuniform scale: stretch along x by 2
* new plane x = 2y

* normal is direction of line x = -2y or x+2y=0
e transformed normal: [2,-1,0]
2 2 0 0 Of1
-1{ |0 1 0 0f-I /<
0| |0 0 1 0]0 ‘
\
0] [0 O O 1[0

* not perpendicular to plane!
* should be direction of 2x = -y




Planes and Normals

* plane is all points perpendicular to normal
*Ne P =(0 (withdot product)
‘N eP =0 (matrix multiply requires transpose)

P=

o o T D

S N < X

* Implicit form: plane = ax +by +cz+ d




Finding Correct Normal Transform

« transform a plane

P P'=MP given M,
N " N'=OQN what should Q be?
N T P': O stay perpendicular
(QN)T (MP) .y substitute from above
NTQT MP — O (AB)T ZBTAT
I
Q"M = N'P=0ifQ"M=I

\T thus the normal to any surface can be
Q = (M ) transformed by the inverse transpose of
the modelling transformation




Outline

* Geometry
* Representation
e Transformation

e Transformation in OpenGL

Computer Graphics




Programing Transformations

* In OpenGL, the transformation matrices are part of the
state, they must be defined prior to any vertices to which

they are to apply.

* In modeling, we often have objects specified in their own
coordinate systems and must use transformations to
bring the objects into the scene.

* OpenGL provides matrix stacks for each type of
supported matrix (model-view, projection, texture) to
store matrices.

Computer Graphics




Current Transformation Matrix (CTM)

* CTM is a 4x4 homogenous coordinate matrix. It is also part
of the states. It will be altered by a set of functions and
applied to all vertex through pipeline.

* CTM is determined via application.

C
!

Vertex > CTM » Vertex
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Change the CTM

Specify CTM mode : glMatrixMode (mode);
mode = (GL_MODELVIEW | GL_PROJECTION | GL_TEXTURE)
Load CTM :glLoadldentity ( void ); glLoadMatrix{fd} ( *m );

m = |D array of |6 elements arranged by the columns

Multiply CTM : gIMultMatrix{fd} ( *m );

Modify CTM : (multiplies CTM with appropriate transformation matrix)
glTranslate {fd} ( x, ¥y, 2);
glScale {fd} ( %, y, 2);
glRotate {fd} ( angle, x, v,z);

rotate counterclockwise around ray (0,0,0) to (X, Y, z)

Computer Graphics




Rotation around a fixed point

Start from Identity: C < |

Move the fixed point to origin: C < CT

Rotate: C €< CR

Move the point back: C < CT-!

Result: C = TRT!

Every transformation corresponds to a function of OpenGL.

*
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CTM in OpenGL

* There is a model-view matrix and a projection matrix in
the pipeline of OpenGL.

* The combination of these two matrices is CTM in OpenGL.
Vertices

» Model-view B Projection i

Vertices

L )
CTM

*
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Using OpenGL Matrices

* Use the following function to specify which matrix you
are changing:

* glMatrixMode(whichMatrix): whichMatrix = GL_PROJECTION |
GL_MODELVIEW

 To guarantee a “fresh start”, use glLoadldentity();

* Loads the identity matrix into the active matrix

Computer Graphics




Using OpenGL Matrices

* To load a user-defined matrix into the current
matrix:

— glLoadMatrix{fd}(TYPE *m)

 To multiply the current matrix by a user defined
matrix

— gIMultMatrix{fd}(TYPE *m)

« SUGGESTION: To avoid row-/column-major
confusion, specify matrices as m[16] instead of
m[4][4]

glLoadMatrixf (A) stack = [A]

glPushMatrix () stack = [A, A]
glMultMatrixf (B) stack = [AB, A]
glPopMatrix () ack = [A]

wx
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Matrix Stacks

* In many cases we need to preserve the transformation matrix
in order to use them later

* Traversing the hierarchical data structure

 When execute the display list, avoid to change the state

e advantages
* no need to compute inverse matrices all the time
* avoids incremental changes to coordinate systems
* accumulation of numerical errors

 practical issues

* in graphics hardware, depth of matrix stacks is limited
 (typically 16 for model/view and about 4 for projective matrix)




Matrix Stacks

* challenge of avoiding unnecessary computation

* using inverse to return to origin
* computing incremental T, -> T,

n
>

Object coordinates
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Matrix Stacks

B Hierarchical representation of an object is a
tree.

B The non-leaf nodes are groups of objects.
B The leaf nodes are primitives (e.g. polygons)

B Transformations are assighed to each node,
and represent the relative transform of the
group or primitive with respect to the parent

group

B As the tree is traversed, the transformations
are combined into one




Matrix Stacks

robot

7 |

nose

eyes

leg

leg

arm

arm

AN

upper
part

lower
part




Matrix Stacks

To keep track of the current transformation,
the transformation stack is maintained.
Basic operations on the stack:

B push: create a copy of the matrix on the top
and put it on the top

B pop: remove the matrix on the top
B multiply: multiply the top by the given matrix

m load: replace the top matrix with a given
matrix




Matrix in OpenGL

« Mantain matrix stack

— glPushMatrix() : used to save current stack
— glPopMatrix() : used to restore previous stack

X

glScalef

glPushMatirx () glPopMatrix{
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Matrix Stacks

glPushMatrix()

elPopMatrix() / D = C scale(2,2,2) trans(1,0,0)
c D DrawSquare()
C C C C glPushMatrix()
IScale3f(2,2,2
58| | B B B giscale3f(2,2,2)
glTranslate3f(1,0,0)
A A A A DrawSquare()

glPopMatrix()




Building the arm

Computer Graphics

| start: unit square

Step 1: scale to the
correct size

/1




Building the arm

 step 2: translate s step 3: add t step 4: scale the
to the correct another unit second box
position square

[ 1] [ 1 [ ]
L] .

t step 6: translate
the second box

| step 5: rotate the
second box




Hierarchical Transformations

m Positioning each part of a complex object
separately is difficult

m If we want to move whole complex objects
consisting of many parts or complex parts of
an object (for example, the arm of a robot)
then we would have to modify
transformations for each part

m solution: build objects hierarchically

Complex models

-can be built in a simple, modular fashion
-can be stored efficiently

-can be updated simply

AN
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Hierarchical Transformations

— Idea: group parts hierarchically,
associate transforms with each

group.
/ ) whole robot = head + body +

legs + arms
leg = upper part + lower part
\ head = neck + eyes + ...

Computer Graphics




Transformation Hierarchy Example

o

glTranslate3f(x,y,0);
glRotatef(&,,0,0,1);
DrawBody();
glPushMatrix();
glTranslate3f(0,7,0);
DrawHead();
glPopMatrix();
glPushMatrix();
glTranslate(2.5,5.5,0);
glRotatef(0,,0,0,1);
DrawUArm();
glTranslate(0,-3.5,0);
glRotatef(0,,0,0,1);
DrawLArm();
glPopMatrix();
... (draw other arm)




Monkeys!




Monkeys!




Giraffes!




Giraffes!




Kangaroos!




Quaternions(

)L

TLE)

* Quaternions were invented by Hamilton, W. R., a Ireland
mathematicians

e Quaternions are an extension of complex numbers that
provide an alternative method for describing and
manipulating rotations.

Less intuitive than our original approach, quaternions
provide advantages for animation and hardware
implementation of rotation.



Quaternions

* In three dimensions, the problem is more difficult because to
specify a rotation about the origin we need to specify both a
direction (a vector) and the amount of rotation (a scalar)

* One solution is to use a representation that consists of both a
vector and a scalar. Usually, this representation is written as the

guaternion
a=(qg> 91> 92> 93) = (qp> Q)>

where g =(ql, g2, g3). The operations among quaternions
are based on the use of three “complex” numbers i, j, and k

with the properties
i’=j=k*=ijk=—1.

These numbers are analogous to the unit vectors in three

dimensions, and we can write g as :
q = q,i+ q,) + g5k




Operational Rule of Quaternions

* the quaternion a, b are given by
a=(qp qp 92, 43) = (40> 1)» b= (py, P)»

e quaternion addition and multiplication
a+b=(py+4q9pP+9)>
ab=(poqo — 9 - P> 9oP + Po9 + 9 X P)-

* a magnitude for quaternions in the normal manner as

|a|2 = q(; = q% - q% - q_% == qé +q-q.

e the inverse of a quaternion

1 .
a =-—(qp —q)-
|al*




Quaternions and Rotation

* Suppose that we use the vector part of a quaternion to represent a
point in space
p=1(0, p).

Thus, the components of p = (x, v, z) give the location of the
point.

* Consider the quaternion

( g . 8 )
r=|cos —,sin —v |,
2 2

where v has unit length. We can then show that the quaternion

ris a unit quaternion (|r| = 1), and therefore

—1 &) . 0
r—=|{cos —, —sin —v|.
2 2




Quaternions and Rotation

* |f we consider the quaternion product of the quaternion p that
represents a point with r, we obtain the new quaternion

P = rpr_l.

This quaternion has the form (0, p’), where

, , 6 .2 f . H 0 . H
p = cos” Ep—l_ sin’ E(pw]v—k 2sin 2 cos E{v X p) — sin E{v X Pp) XV

and thus p’ is the representation of a point. What is less

obvious is that p’ is the result of rotating the point p by 0

degrees about the vector v.




Quaternions and Rotation

e Because we get the same result, the quaternion product formed
from r and p is an alternate to transformation matrices as a
representation of rotation with a fixed point of the origin about an
arbitrary axis.

* If we count operations, quaternions are faster and have been built
into both hardware and software implementations.

* In addition to the efficiency of using quaternions instead of
rotation matrices, quaternions can be interpolated to obtain
smooth sequences of rotations for animation.




Interface

* A major problem of interactive computer graphics is how to use

the equipment of the two-dimensional (such as a mouse) to
control three-dimensional objects.

* Alternative ways

e Virtual track ball(FEHAEREREK)
* three—dimensional input device : spaceball ( Z[BJEk )

* Using Areas of the Screen: According to the different state of the

mouse button, the use of the distance to the center of control
angle, position, and zooming
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