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Basic geometric elements

• Geometry study the relationship among objects in N-dimensional 

space

• In computer graphic, we mainly focus on objects in 2D & 3D space.

• Hoping to get a minimum set of geometric shapes and we can 

construct complex object base on it.

• Three basic geometric elements

• Scalar

• Vector

• Point
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Scalar

• Scalar can be defined as a member of collection

• Collection has two operation (addition and multiplication).

• They comply with some basic arithmetic axioms 

(associativity law, commutatively law, inverse)

• real numbers, complex numbers, and rational functions.

• Scalar doesn’t have geometric properties

4Computer Graphics



Vector

• Definition: vector is a line having the two properties

• Direction

• Length: |v|

• Examples:

• Power

• Speed

• Directed line segment
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Vector operations
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• Each vector has an inverse
– Same length but different directions

• Each vector can be multiplied by a scalar

• A zero vector
– Length is 0, direction is uncertain

• Sum of two vectors is a vector
– Triangle law



Inner product（Dot product）
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Orthonormal Vector
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Orthonormal Vector
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Coordinates and Vectors
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Dot product between two vectors
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Dot product: some applications in CG

• Find angle between two vectors (e.g. cosine of angle 

between light source and surface for shading)

• Finding projection of one vector on another (e.g. 

coordinates of point in arbitrary coordinate system)

• Advantage: can be computed easily in Cartesian 

components
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Cross Product
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Cross Product
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Normals
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• Each plane has a vector n perpendicular to itself

• If a plane is determined with a point and two
vectors

• we can get n by the following equation



Linear space

• The most important mathematical space is the (linear) 

vector space.

• Two basic geometric elements:

• scalar, vector

• Operation

• Scalar multiplication:

• Vector addition:
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Linear combination

• Given n vectors v1, v2, …, vn and n scalar a1, a2, …, an,
then

is also a vector, called the linear combination of this
set of vectors.

• Irrelevant with coordiante



Vectors have no positions
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Point

• Position in space

• Use uppercase letters

• Operational between points and vectors

• Subtraction with two points, we can get a vector

• Addition with a point and a vector, we get a point
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Affine space

• Space constructed by points and vectors

• Operational:

• Vector + Vector = Vector

• Scalar x Vector = Vector

• Point + Vector = Point

• Scalar + Scalar = Scalar
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Linear combination of points

• Fixed coordinate system, given two points, what is P1
+ P2?
• P1 is origin, P1 + P2 = P2

• P1 and P2 are symmetric on origin, P1 + P2 = origin

• The Positions of P1, P2 are relevant with coordiante

• Combination coefficients have limitations
• When , linear combination of points is a

point

• = point + vector = point



Affine convex combination
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Convex Hull

• The minimum convex contains P1, P2, …, Pn

• Can use the “Shrink” method to get it
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Line

• All points comply with the following form
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Parametric form
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Rays and segments
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Linear interpolation
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Polygon deformation

• Given two lines with the same number of vertices, we can get a 

smooth transition from the first to the second polyline
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Man to Woman
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Celebrity Face
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Curve and Surface

• Curve is single parameter 

defined geometry with form 

P(a), the function is non-linear.

• Surface is define with P(a, b), 

the function is non-linear.

• linear function is plane & 

polygon
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Plane

• A plane is determined by a point with two vectors or three 

points
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Triangle
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• Transformation in OpenGL
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Representation

• Until now we have only discussed the geometric objects, 

without using any reference frame, for example, the coordinate 

system

• Requires a reference point and the frame to contact with 

objects in the physical world

• Position: Where is a point?(if there is not frame, we can not 

answer it)

• World coordinate system
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Coordinate
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Example
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• Note that the above statement is relative to a particular basis

• Eg: OpenGL represents a vector with respect to the world 

coordinate system, it is necessary to transform to the camera 

coordinate system .



Coordinate
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Frame

• Coordinate system is insufficient to represent points.

• We need an origin to construct a frame. The origin and the 

basis vectors determine a frame (标架).
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Representation in frame
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Point and Vector confusion
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Unified representation
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Homogeneous coordinate
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Homogeneous coordinate and CG

• Homogeneous coordinates is the key to all computer 

graphics systems

• All standard transform (rotate, zoom) can be applied to 4 ×
4 matrix multiplication

• Hardware pipeline system can be applied to the four-

dimensional representation

• For the orthogonal projection, you can ensure vector by w = 

0, ensure point by w = 1

• For perspective projection, the need for special treatment: 

perspective division
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Coordinate transformation
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Use 1st Basis to represent 2nd
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Matrix form
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Changing the frame

• Perform similar operation to homogeneous coordinate

• Consider frame

• Any vector or point can be represented by one of them
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One Frame represent another
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One Frame represent another
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• where now M is the 4 × 4 matrix

• M is called the matrix representation of the change of 

frames.



One Frame represent another

• We can also use M to compute the changes in the 

representations directly.

• Suppose that a and b are the homogeneous coordinate 

representations either of two points or of two vectors in 

the two frames. Then

• Hence: 
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One Frame represent another
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Transform representation
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Advantages of affine transformation

• All of the affine transformation remain linearity

• The most important is that all affine transformations can be 

represented as matrix multiplications in homogeneous 

coordinates.

• The uniform representation of all affine transformations makes 

carrying out successive transformations far easier than in three-

dimensional space.

• modern hardware implements homogeneous coordinate 

operations directly, using parallelism to achieve high-speed 

calculations.
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Movement of the camera
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Outline
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• Transformation in OpenGL
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General transformation

• The so-called transformation is to map points to other points, 

the vectors are mapped to other vectors
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Linear Transformations
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Affine Transformations
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Affine transformation

• Maintaining collinearity 

• Many important physical feature of transformation

• Rigid transformation: rotation, translation（Only alter position 

and Orientation）

• Other affine transformations（Scaling, shear） will alter object’s 

shape.

• In CG world，we just need to change the line of the two 

endpoints, and the system automatically after the conversion 

to draw the line between the two endpoints.
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Why we need transformation？

• Procedures to compute new positions of objects

• Used to modify objects or to transform (map) from one 
coordinate system to another coordinate system

61Computer Graphics



Function 1

• Construct scenes
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Function 1

• Construct 3D scene
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Function 1

• Snowflake structure
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Function 2

• The designer may want to view object from different angles of 

the same scene, then he can:

• the object is fixed, the position of the camera is transformed
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Function 3

• In computer animation, in the adjacent frames, the position of 

several objects move relative to each other. 

• This is done by translating and rotating the local coordinate system.
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Pipeline
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Translation

• Put a point to a new position

• Determined by a vector d

• Three free degrees

• P’ = P + d

68Computer Graphics



Translation of objects

• Translate all points of an object along the same vector.
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Before After



Representation of Translation

• Homogeneous coordinates in a frame

• Then p’ = p + d or
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注意：这个表达式是四
维的，而且表示的是：

点 = 点 + 向量



Translation matrix

• Using a 4 × 4 homogeneous coordinates matrix T to represents 

the translation

• p’ = Tp

• This form is more easily achieved, because all the affine 

transformation can be used in this kind of form
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2D rotation
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2D rotation

• Consider θ degrees rotation about the origin
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cos(A+B) = cosAcosB-sinAsinB

sin(A+B) = sinAcosB+cosAsinB
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Simple Rotate
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Simple Rotate
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Simple Rotate
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Simple Rotate
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3D rotation

• Several special conditions:

• Respectively rotatable around the x, y, z-axis

• Rotate along the general axis through the origin

• Rotate along a general axis except the origin
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3D rotation around Z-axis
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3D rotation around Z-axis
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3D rotation around X-axis
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3D rotation around X-axis
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3D rotation around Y-axis
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3D rotation around Y-axis
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Rotate along the general axis through the origin

• Can be decomposed as the combination of rotation on x, y, z 

axis

• Note that the rotation order can not be exchanged
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Rotate around a fixed point except origin

• Move the fixed point to origin

• Rotate

• Move the fixed point back to its initial place
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• P rotates to P’ with respect to the axis by

y

z

P

P’

x

Rotation surrounding a general axis

• Given axis defined by two points(已知旋转轴):

• We derive the rotation matrix by composition



(2) Rotate surrounding z-axis by

Three steps (三步骤)

y

z

x

l

y

z

x

l

y

z

x

l

(1) Transform l such that it overlaps with z-axis

(3) Reverse transform



Step 1

(1) Transform l such that it overlaps with z-axis: can be decomposed
three step again

(1a) Translate such that l passes through the origin

(1b) Rotate surrounding x-axis such that l locate on the ZOX plane

(1c) Rotate around y-axis such that l locate on the ZOX plane
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(1a) Translation to P1
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1b) Rotate by surrounding X-axis

y

z

x

角应当是l在YOZ平面

的投影与z轴的夹角。因此：



y

z

x

1c) Rotate by surrounding y-axis

这个 角应当是l旋转到ZOX

平面后与Z轴的夹角。因此：



y

z

x

Step 2: 

Rotate by in terms of z-axis 



Use reverse transformation to derive final 

transformation

Step 3: 



Scaling
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• Scale along each coordinate (origin is fixed point)



Matrix Notations for Transformations
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Matrix Representations and Homogeneous Coordinates
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Inverses in 3D!
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Transformation Matrix Inverse

Scaling

Rotation

Translation



Composite transformation

• Often want to combine transforms（E.g. first scale by 2, then 

rotate by 45 degrees

• Advantage of matrix formulation: All still a matrix

• Because many vertices have the same transformation, the price to 

construct matrix M = ABCD is small

• The difficulty is how to construct a transformation matrix to 

meet the requirements in accordance with the requirements of 

the application
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Matrix Composition

• matrices are convenient, efficient way to represent series 
of transformations
• hardware matrix multiply

• From the mathematical point of view, the following representation is 
equivalent：matrix multiplication is associative
• p′ = (T*(R*(S*p)))

• p′ = (T*R*S)*p

• procedure
• correctly order your matrices!

• multiply matrices together

• result is one matrix, multiply vertices by this matrix 

• all vertices easily transformed with one matrix multiply



Matrix Multiplication is Not Commutative (不可交换)
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Transformation sequence is not commutative



Matrix Multiplication is Not Commutative
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Matrix Multiplication is Not Commutative

103Computer Graphics



Properties of Transformations
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105

Transforming Geometric Objects

• lines, polygons made up of vertices
• transform the vertices

• interpolate between

• does this work for everything? no!
• normals are trickier
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Computing Normals

• normal
• direction specifying orientation of polygon

• W = 0 means direction with homogeneous coords

• W = 1 for points of object vertices

• used for lighting
• must be normalized to unit length

• can compute if not supplied with object 

N

1P
2P

3P
)()( 1312 PPPPN 

N

Assume vertices ordered CCW when viewed from visible side of 
polygon
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Transforming Normals

• so if points transformed by matrix M, can we just 
transform normal vector by M too?
• translations OK: w = 0 means unaffected

• rotations OK

• uniform scaling OK

• these all maintain direction
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Transforming Normals

• nonuniform scaling does not work

• x- y =0 plane 
• line x = y

• normal: [1,-1,0] 
• direction of line x = -y

• (ignore normalization for now)
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Transforming Normals

• apply nonuniform scale: stretch along x by 2
• new plane x = 2y

• normal is direction of line x = -2y or x+2y=0

• transformed normal: [2,-1,0]

• not perpendicular to plane!

• should be direction of 2x = -y
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Planes and Normals

• plane is all points perpendicular to normal
• (with dot product)

• (matrix multiply requires transpose)

• Implicit form: plane =
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Programing Transformations
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Current Transformation Matrix (CTM)

• CTM is a 4x4 homogenous coordinate matrix. It is also part 

of the states. It will be altered by a set of functions and 

applied to all vertex through pipeline.

• CTM is determined via application.
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Vertex Vertex



Change the CTM
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Rotation around a fixed point

• Start from Identity: C  I

• Move the fixed point to origin: C  CT

• Rotate: C  CR

• Move the point back: C  CT-1

• Result: C = TRT-1

• Every transformation corresponds to a function of OpenGL.
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CTM in OpenGL

• There is a model-view matrix and a projection matrix in 

the pipeline of OpenGL.

• The combination of these two matrices is CTM in OpenGL.
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Using OpenGL Matrices
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• Use the following function to specify which matrix you 

are changing:

• glMatrixMode(whichMatrix): whichMatrix = GL_PROJECTION | 

GL_MODELVIEW

• To guarantee a “fresh start”, use glLoadIdentity();

• Loads the identity matrix into the active matrix



Using OpenGL Matrices
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Matrix Stacks

• In many cases we need to preserve the transformation matrix 
in order to use them later

• Traversing the hierarchical data structure

• When execute the display list, avoid to change the state

• advantages
• no need to compute inverse matrices all the time
• avoids incremental changes to coordinate systems

• accumulation of numerical errors

• practical issues
• in graphics hardware, depth of matrix stacks is limited 

• (typically 16 for model/view and about 4 for projective matrix)



Matrix Stacks

• challenge of avoiding unnecessary computation
• using inverse to return to origin

• computing incremental T1  -> T2

Object coordinates

World coordinates

T1(x)
T2(x)

T3(x)



Matrix Stacks



Matrix Stacks



Matrix Stacks



Matrix in OpenGL
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Matrix Stacks

glPushMatrix()

glPopMatrix()

A

B

C

A

B

C

A

B

C

C

glScale3f(2,2,2)

D = C scale(2,2,2) trans(1,0,0)

A

B

C

D

DrawSquare()

glTranslate3f(1,0,0)

DrawSquare()

glPushMatrix()

glPopMatrix()



Building the arm
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Building the arm
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Hierarchical Transformations
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Hierarchical Transformations
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Transformation Hierarchy Example

4

15 3

2

x

y

glTranslate3f(x,y,0);
glRotatef(    ,0,0,1);
DrawBody();
glPushMatrix();

glTranslate3f(0,7,0);
DrawHead();

glPopMatrix();
glPushMatrix();

glTranslate(2.5,5.5,0);
glRotatef(    ,0,0,1);
DrawUArm();
glTranslate(0,-3.5,0);
glRotatef(    ,0,0,1);
DrawLArm();

glPopMatrix();
... (draw other arm)

1

2

3
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Monkeys!
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Monkeys!
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Giraffes!
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Giraffes!
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Kangaroos!



Quaternions(四元数)

• Quaternions were invented by Hamilton, W. R. , a Ireland 
mathematicians

• Quaternions are an extension of complex numbers that 
provide an alternative method for describing  and 
manipulating rotations.

• Less intuitive than our original approach, quaternions 
provide advantages for animation and hardware 
implementation of rotation.



• In three dimensions, the problem is more difficult because to 
specify a rotation about the origin we need to specify both a 
direction (a vector) and the amount of rotation (a scalar)

• One solution is to use a representation that consists of both a 
vector and a scalar. Usually, this representation is written as the 
quaternion

where q = (q1, q2, q3). The operations among quaternions  

are based on the use of three “complex” numbers i, j, and k 

with the properties

These numbers are analogous to the unit vectors in three 

dimensions, and we can write q as：

Quaternions



• the quaternion a、b are given by ：

• quaternion addition and multiplication

Operational Rule of Quaternions 

• a magnitude for quaternions in the normal manner as

• the inverse of a quaternion



Quaternions and Rotation

• Suppose that we use the vector part of a quaternion to represent a 
point in space

Thus, the components of p = (x, y, z) give the location of the 
point. 

• Consider the quaternion：

where v has unit length. We can then show that the quaternion 

r is a unit quaternion (|r| = 1), and therefore



Quaternions and Rotation

• If we consider the quaternion product of the quaternion p that 
represents a point with r, we obtain the new quaternion

and thus p’ is the representation of a point. What is less 

obvious is that p’ is the result of rotating the point p by θ 

degrees about the vector v. 



• Because we get the same result, the quaternion product formed 
from r and p is an alternate to transformation matrices as a 
representation of rotation with a fixed point of the origin about an 
arbitrary axis.

• If we count operations, quaternions are faster and have been built 
into both hardware and software implementations.

• In addition to the efficiency of using quaternions instead of 
rotation matrices, quaternions can be interpolated to obtain 
smooth sequences of rotations for animation.

Quaternions and Rotation



Interface

• A major problem of interactive computer graphics is how to use 

the equipment of the two-dimensional (such as a mouse) to 

control three-dimensional objects.

• Alternative ways

• Virtual track ball(虚拟跟踪球)

• three–dimensional input device : spaceball（空间球）

• Using Areas of the Screen: According to the different state of the 

mouse button, the use of the distance to the center of control 

angle, position, and zooming
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