
Geometry Objects & Transformation

Teacher: A.prof. Chengying Gao(高成英)

E-mail: mcsgcy@mail.sysu.edu.cn

School of Data and Computer Science

Computer Graphics

mailto:mcsgcy@mail.sysu.edu.cn

Outline

• Geometry

• Representation

• Transformation

• Transformation in OpenGL

2Computer Graphics

Basic geometric elements

• Geometry study the relationship among objects in N-dimensional

space

• In computer graphic, we mainly focus on objects in 2D & 3D space.

• Hoping to get a minimum set of geometric shapes and we can

construct complex object base on it.

• Three basic geometric elements

• Scalar

• Vector

• Point

3Computer Graphics

Scalar

• Scalar can be defined as a member of collection

• Collection has two operation (addition and multiplication).

• They comply with some basic arithmetic axioms

(associativity law, commutatively law, inverse)

• real numbers, complex numbers, and rational functions.

• Scalar doesn’t have geometric properties

4Computer Graphics

Vector

• Definition: vector is a line having the two properties

• Direction

• Length: |v|

• Examples:

• Power

• Speed

• Directed line segment

5Computer Graphics

Vector operations

6Computer Graphics

• Each vector has an inverse
– Same length but different directions

• Each vector can be multiplied by a scalar

• A zero vector
– Length is 0, direction is uncertain

• Sum of two vectors is a vector
– Triangle law

Inner product（Dot product）

7Computer Graphics

Orthonormal Vector

8Computer Graphics

Orthonormal Vector

9Computer Graphics

Coordinates and Vectors

10Computer Graphics

Dot product between two vectors

11Computer Graphics

Dot product: some applications in CG

• Find angle between two vectors (e.g. cosine of angle

between light source and surface for shading)

• Finding projection of one vector on another (e.g.

coordinates of point in arbitrary coordinate system)

• Advantage: can be computed easily in Cartesian

components

12Computer Graphics

Cross Product

13Computer Graphics

Cross Product

14Computer Graphics

Normals

15Computer Graphics

• Each plane has a vector n perpendicular to itself

• If a plane is determined with a point and two
vectors

• we can get n by the following equation

Linear space

• The most important mathematical space is the (linear)

vector space.

• Two basic geometric elements:

• scalar, vector

• Operation

• Scalar multiplication:

• Vector addition:

16Computer Graphics

Linear combination

• Given n vectors v1, v2, …, vn and n scalar a1, a2, …, an,
then

is also a vector, called the linear combination of this
set of vectors.

• Irrelevant with coordiante

Vectors have no positions

18Computer Graphics

Point

• Position in space

• Use uppercase letters

• Operational between points and vectors

• Subtraction with two points, we can get a vector

• Addition with a point and a vector, we get a point

19Computer Graphics

Affine space

• Space constructed by points and vectors

• Operational:

• Vector + Vector = Vector

• Scalar x Vector = Vector

• Point + Vector = Point

• Scalar + Scalar = Scalar

20Computer Graphics

Linear combination of points

• Fixed coordinate system, given two points, what is P1
+ P2?
• P1 is origin, P1 + P2 = P2

• P1 and P2 are symmetric on origin, P1 + P2 = origin

• The Positions of P1, P2 are relevant with coordiante

• Combination coefficients have limitations
• When , linear combination of points is a

point

• = point + vector = point

Affine convex combination

22Computer Graphics

Convex Hull

• The minimum convex contains P1, P2, …, Pn

• Can use the “Shrink” method to get it

23Computer Graphics

Line

• All points comply with the following form

24Computer Graphics

Parametric form

25Computer Graphics

Rays and segments

26Computer Graphics

Linear interpolation

27Computer Graphics

Polygon deformation

• Given two lines with the same number of vertices, we can get a

smooth transition from the first to the second polyline

28Computer Graphics

Man to Woman

29Computer Graphics

Celebrity Face

30Computer Graphics

Curve and Surface

• Curve is single parameter

defined geometry with form

P(a), the function is non-linear.

• Surface is define with P(a, b),

the function is non-linear.

• linear function is plane &

polygon

31Computer Graphics

Plane

• A plane is determined by a point with two vectors or three

points

32Computer Graphics

Triangle

33Computer Graphics

Outline

• Geometry

• Representation

• Transformation

• Transformation in OpenGL

34Computer Graphics

Representation

• Until now we have only discussed the geometric objects,

without using any reference frame, for example, the coordinate

system

• Requires a reference point and the frame to contact with

objects in the physical world

• Position: Where is a point?(if there is not frame, we can not

answer it)

• World coordinate system

35Computer Graphics

Coordinate

36Computer Graphics

Example

37Computer Graphics

• Note that the above statement is relative to a particular basis

• Eg: OpenGL represents a vector with respect to the world

coordinate system, it is necessary to transform to the camera

coordinate system .

Coordinate

38Computer Graphics

Frame

• Coordinate system is insufficient to represent points.

• We need an origin to construct a frame. The origin and the

basis vectors determine a frame (标架).

39Computer Graphics

Representation in frame

40Computer Graphics

Point and Vector confusion

41Computer Graphics

Unified representation

42Computer Graphics

Homogeneous coordinate

43Computer Graphics

Homogeneous coordinate and CG

• Homogeneous coordinates is the key to all computer

graphics systems

• All standard transform (rotate, zoom) can be applied to 4 ×
4 matrix multiplication

• Hardware pipeline system can be applied to the four-

dimensional representation

• For the orthogonal projection, you can ensure vector by w =

0, ensure point by w = 1

• For perspective projection, the need for special treatment:

perspective division

44Computer Graphics

Coordinate transformation

45Computer Graphics

Use 1st Basis to represent 2nd

46Computer Graphics

Matrix form

47Computer Graphics

Changing the frame

• Perform similar operation to homogeneous coordinate

• Consider frame

• Any vector or point can be represented by one of them

48Computer Graphics

One Frame represent another

49Computer Graphics

One Frame represent another

50Computer Graphics

• where now M is the 4 × 4 matrix

• M is called the matrix representation of the change of

frames.

One Frame represent another

• We can also use M to compute the changes in the

representations directly.

• Suppose that a and b are the homogeneous coordinate

representations either of two points or of two vectors in

the two frames. Then

• Hence:

51Computer Graphics

One Frame represent another

52Computer Graphics

Transform representation

53Computer Graphics

Advantages of affine transformation

• All of the affine transformation remain linearity

• The most important is that all affine transformations can be

represented as matrix multiplications in homogeneous

coordinates.

• The uniform representation of all affine transformations makes

carrying out successive transformations far easier than in three-

dimensional space.

• modern hardware implements homogeneous coordinate

operations directly, using parallelism to achieve high-speed

calculations.

54Computer Graphics

Movement of the camera

55Computer Graphics

Outline

• Geometry

• Representation

• Transformation

• Transformation in OpenGL

56Computer Graphics

General transformation

• The so-called transformation is to map points to other points,

the vectors are mapped to other vectors

57Computer Graphics

Linear Transformations

58Computer Graphics

Affine Transformations

59Computer Graphics

Affine transformation

• Maintaining collinearity

• Many important physical feature of transformation

• Rigid transformation: rotation, translation（Only alter position

and Orientation）

• Other affine transformations（Scaling, shear） will alter object’s

shape.

• In CG world，we just need to change the line of the two

endpoints, and the system automatically after the conversion

to draw the line between the two endpoints.

60Computer Graphics

Why we need transformation？

• Procedures to compute new positions of objects

• Used to modify objects or to transform (map) from one
coordinate system to another coordinate system

61Computer Graphics

Function 1

• Construct scenes

62Computer Graphics

Function 1

• Construct 3D scene

63Computer Graphics

Function 1

• Snowflake structure

64Computer Graphics

Function 2

• The designer may want to view object from different angles of

the same scene, then he can:

• the object is fixed, the position of the camera is transformed

65Computer Graphics

Function 3

• In computer animation, in the adjacent frames, the position of

several objects move relative to each other.

• This is done by translating and rotating the local coordinate system.

66Computer Graphics

Pipeline

67Computer Graphics

Translation

• Put a point to a new position

• Determined by a vector d

• Three free degrees

• P’ = P + d

68Computer Graphics

Translation of objects

• Translate all points of an object along the same vector.

69Computer Graphics

Before After

Representation of Translation

• Homogeneous coordinates in a frame

• Then p’ = p + d or

70Computer Graphics

注意：这个表达式是四
维的，而且表示的是：

点 = 点 + 向量

Translation matrix

• Using a 4 × 4 homogeneous coordinates matrix T to represents

the translation

• p’ = Tp

• This form is more easily achieved, because all the affine

transformation can be used in this kind of form

71Computer Graphics

2D rotation

72Computer Graphics

2D rotation

• Consider θ degrees rotation about the origin

73Computer Graphics

cos(A+B) = cosAcosB-sinAsinB

sin(A+B) = sinAcosB+cosAsinB

   
    















 










y

x

y

x





cossin

sincos

'

'

Simple Rotate

74Computer Graphics

Simple Rotate

75Computer Graphics

Simple Rotate

76Computer Graphics

Simple Rotate

77Computer Graphics

3D rotation

• Several special conditions:

• Respectively rotatable around the x, y, z-axis

• Rotate along the general axis through the origin

• Rotate along a general axis except the origin

78Computer Graphics

3D rotation around Z-axis

79Computer Graphics

3D rotation around Z-axis

80Computer Graphics

3D rotation around X-axis

81Computer Graphics

3D rotation around X-axis

82Computer Graphics

3D rotation around Y-axis

83Computer Graphics

3D rotation around Y-axis

84Computer Graphics

Rotate along the general axis through the origin

• Can be decomposed as the combination of rotation on x, y, z

axis

• Note that the rotation order can not be exchanged

85Computer Graphics

Rotate around a fixed point except origin

• Move the fixed point to origin

• Rotate

• Move the fixed point back to its initial place

86Computer Graphics

• P rotates to P’ with respect to the axis by

y

z

P

P’

x

Rotation surrounding a general axis

• Given axis defined by two points(已知旋转轴):

• We derive the rotation matrix by composition

(2) Rotate surrounding z-axis by

Three steps (三步骤)

y

z

x

l

y

z

x

l

y

z

x

l

(1) Transform l such that it overlaps with z-axis

(3) Reverse transform

Step 1

(1) Transform l such that it overlaps with z-axis: can be decomposed
three step again

(1a) Translate such that l passes through the origin

(1b) Rotate surrounding x-axis such that l locate on the ZOX plane

(1c) Rotate around y-axis such that l locate on the ZOX plane

y

z

x

P

P’

(1a) Translation to P1

y

z

P

P’

x

1b) Rotate by surrounding X-axis

y

z

x

角应当是l在YOZ平面

的投影与z轴的夹角。因此：

y

z

x

1c) Rotate by surrounding y-axis

这个 角应当是l旋转到ZOX

平面后与Z轴的夹角。因此：

y

z

x

Step 2:

Rotate by in terms of z-axis

Use reverse transformation to derive final

transformation

Step 3:

Scaling

95Computer Graphics

• Scale along each coordinate (origin is fixed point)

Matrix Notations for Transformations

96Computer Graphics

Matrix Representations and Homogeneous Coordinates

97Computer Graphics

Inverses in 3D!

98Computer Graphics

Transformation Matrix Inverse

Scaling

Rotation

Translation

Composite transformation

• Often want to combine transforms（E.g. first scale by 2, then

rotate by 45 degrees

• Advantage of matrix formulation: All still a matrix

• Because many vertices have the same transformation, the price to

construct matrix M = ABCD is small

• The difficulty is how to construct a transformation matrix to

meet the requirements in accordance with the requirements of

the application

99Computer Graphics

Matrix Composition

• matrices are convenient, efficient way to represent series
of transformations
• hardware matrix multiply

• From the mathematical point of view, the following representation is
equivalent：matrix multiplication is associative
• p′ = (T*(R*(S*p)))

• p′ = (T*R*S)*p

• procedure
• correctly order your matrices!

• multiply matrices together

• result is one matrix, multiply vertices by this matrix

• all vertices easily transformed with one matrix multiply

Matrix Multiplication is Not Commutative (不可交换)

101Computer Graphics

Transformation sequence is not commutative

Matrix Multiplication is Not Commutative

102Computer Graphics

Matrix Multiplication is Not Commutative

103Computer Graphics

Properties of Transformations

104Computer Graphics

105

Transforming Geometric Objects

• lines, polygons made up of vertices
• transform the vertices

• interpolate between

• does this work for everything? no!
• normals are trickier

106

Computing Normals

• normal
• direction specifying orientation of polygon

• W = 0 means direction with homogeneous coords

• W = 1 for points of object vertices

• used for lighting
• must be normalized to unit length

• can compute if not supplied with object

N

1P
2P

3P
)()(1312 PPPPN 

N

Assume vertices ordered CCW when viewed from visible side of
polygon

107

Transforming Normals

• so if points transformed by matrix M, can we just
transform normal vector by M too?
• translations OK: w = 0 means unaffected

• rotations OK

• uniform scaling OK

• these all maintain direction



























































010000

'

'

'

333231

232221

131211

z

y

x

Tmmm

Tmmm

Tmmm

z

y

x

z

y

x

108

Transforming Normals

• nonuniform scaling does not work

• x- y =0 plane
• line x = y

• normal: [1,-1,0]
• direction of line x = -y

• (ignore normalization for now)

109

Transforming Normals

• apply nonuniform scale: stretch along x by 2
• new plane x = 2y

• normal is direction of line x = -2y or x+2y=0

• transformed normal: [2,-1,0]

• not perpendicular to plane!

• should be direction of 2x = -y


2

1

0

0





















2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















1

1

0

0



















110

Planes and Normals

• plane is all points perpendicular to normal
• (with dot product)

• (matrix multiply requires transpose)

• Implicit form: plane =



N P  0



NT P  0









































w

z

y

x

P

d

c

b

a

N ,



ax by cz  d

111

MPP 'P

N QNN '



N
T
P  0 if QT

M  I

0'' PN T

0)()(MPQN T

0MPQN TT

IMQT 



Q  M1 
T

given M,
what should Q be?

stay perpendicular

substitute from above

thus the normal to any surface can be
transformed by the inverse transpose of

the modelling transformation

Finding Correct Normal Transform

• transform a plane



(AB)
T BTAT

Outline

• Geometry

• Representation

• Transformation

• Transformation in OpenGL

112Computer Graphics

Programing Transformations

113Computer Graphics

Current Transformation Matrix (CTM)

• CTM is a 4x4 homogenous coordinate matrix. It is also part

of the states. It will be altered by a set of functions and

applied to all vertex through pipeline.

• CTM is determined via application.

114Computer Graphics

Vertex Vertex

Change the CTM

115Computer Graphics

Rotation around a fixed point

• Start from Identity: C  I

• Move the fixed point to origin: C  CT

• Rotate: C  CR

• Move the point back: C  CT-1

• Result: C = TRT-1

• Every transformation corresponds to a function of OpenGL.

116Computer Graphics

CTM in OpenGL

• There is a model-view matrix and a projection matrix in

the pipeline of OpenGL.

• The combination of these two matrices is CTM in OpenGL.

117Computer Graphics

Using OpenGL Matrices

118Computer Graphics

• Use the following function to specify which matrix you

are changing:

• glMatrixMode(whichMatrix): whichMatrix = GL_PROJECTION |

GL_MODELVIEW

• To guarantee a “fresh start”, use glLoadIdentity();

• Loads the identity matrix into the active matrix

Using OpenGL Matrices

119Computer Graphics

Matrix Stacks

• In many cases we need to preserve the transformation matrix
in order to use them later

• Traversing the hierarchical data structure

• When execute the display list, avoid to change the state

• advantages
• no need to compute inverse matrices all the time
• avoids incremental changes to coordinate systems

• accumulation of numerical errors

• practical issues
• in graphics hardware, depth of matrix stacks is limited

• (typically 16 for model/view and about 4 for projective matrix)

Matrix Stacks

• challenge of avoiding unnecessary computation
• using inverse to return to origin

• computing incremental T1 -> T2

Object coordinates

World coordinates

T1(x)
T2(x)

T3(x)

Matrix Stacks

Matrix Stacks

Matrix Stacks

Matrix in OpenGL

125Computer Graphics

Matrix Stacks

glPushMatrix()

glPopMatrix()

A

B

C

A

B

C

A

B

C

C

glScale3f(2,2,2)

D = C scale(2,2,2) trans(1,0,0)

A

B

C

D

DrawSquare()

glTranslate3f(1,0,0)

DrawSquare()

glPushMatrix()

glPopMatrix()

Building the arm

127Computer Graphics

Building the arm

128Computer Graphics

Hierarchical Transformations

129Computer Graphics

Hierarchical Transformations

130Computer Graphics

Transformation Hierarchy Example

4

15 3

2

x

y

glTranslate3f(x,y,0);
glRotatef(,0,0,1);
DrawBody();
glPushMatrix();

glTranslate3f(0,7,0);
DrawHead();

glPopMatrix();
glPushMatrix();

glTranslate(2.5,5.5,0);
glRotatef(,0,0,1);
DrawUArm();
glTranslate(0,-3.5,0);
glRotatef(,0,0,1);
DrawLArm();

glPopMatrix();
... (draw other arm)

1

2

3

132

Monkeys!

133

Monkeys!

134

Giraffes!

135

Giraffes!

136

Kangaroos!

Quaternions(四元数)

• Quaternions were invented by Hamilton, W. R. , a Ireland
mathematicians

• Quaternions are an extension of complex numbers that
provide an alternative method for describing and
manipulating rotations.

• Less intuitive than our original approach, quaternions
provide advantages for animation and hardware
implementation of rotation.

• In three dimensions, the problem is more difficult because to
specify a rotation about the origin we need to specify both a
direction (a vector) and the amount of rotation (a scalar)

• One solution is to use a representation that consists of both a
vector and a scalar. Usually, this representation is written as the
quaternion

where q = (q1, q2, q3). The operations among quaternions

are based on the use of three “complex” numbers i, j, and k

with the properties

These numbers are analogous to the unit vectors in three

dimensions, and we can write q as：

Quaternions

• the quaternion a、b are given by ：

• quaternion addition and multiplication

Operational Rule of Quaternions

• a magnitude for quaternions in the normal manner as

• the inverse of a quaternion

Quaternions and Rotation

• Suppose that we use the vector part of a quaternion to represent a
point in space

Thus, the components of p = (x, y, z) give the location of the
point.

• Consider the quaternion：

where v has unit length. We can then show that the quaternion

r is a unit quaternion (|r| = 1), and therefore

Quaternions and Rotation

• If we consider the quaternion product of the quaternion p that
represents a point with r, we obtain the new quaternion

and thus p’ is the representation of a point. What is less

obvious is that p’ is the result of rotating the point p by θ

degrees about the vector v.

• Because we get the same result, the quaternion product formed
from r and p is an alternate to transformation matrices as a
representation of rotation with a fixed point of the origin about an
arbitrary axis.

• If we count operations, quaternions are faster and have been built
into both hardware and software implementations.

• In addition to the efficiency of using quaternions instead of
rotation matrices, quaternions can be interpolated to obtain
smooth sequences of rotations for animation.

Quaternions and Rotation

Interface

• A major problem of interactive computer graphics is how to use

the equipment of the two-dimensional (such as a mouse) to

control three-dimensional objects.

• Alternative ways

• Virtual track ball(虚拟跟踪球)

• three–dimensional input device : spaceball（空间球）

• Using Areas of the Screen: According to the different state of the

mouse button, the use of the distance to the center of control

angle, position, and zooming

143Computer Graphics

